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ABS TRACT

This paper derives (§Ill-IV) and summarizes (§VI) a new "plug-in-

and-grind" formalism for calculating the gravitational waves emitted by

any system with weak internal gravitational fields. If the internal

fields have negligible influence on the system's motions, then the new

formalism reduces to standard "linearized theory". Whether or not grav-

ity affects the motions, if the motions are slow and internal stresses

are weak, then the new formalism reduces to the standard "quadrupole-

moment formalism" (§V). In the general case the new formalism expresses

the radiation in terms of a retarded Green's function for slightly curved

spacetime, and then breaks the Green's-function integral into five

easily understood pieces: direct radiation, produced directly by the

motions of the source; whump radiation, produced by the "gravitational

stresses" of the source; transition radiation, produced by a time-changing

time delay ("Shapiro effect") in the propagation of the nonradiative, 1/r

field of the source; focussingradiation,. produced when one portion of the

source focusses, in a time-dependent way, the nonradiative field of

another portion of the source, and tail radiation, produced by "backscatter"

of the nonradiative field in regions of focussing.



I. INTRODUCTION

a) Introduction to This Series of Papers

Thanks to the pioneering work of Joseph Weber (1960,1969), "gravi-

tational-wave astronomy" may be a reality by 1980. Although Weber's "events"

may turn out to be non-gravitational in origin, second-generation detectors

of the Weber "resonant-bar" type, with amplitude sensitivities roughly 100-fold bet-

ter than today's bars, are now under construction (Braginsky 1974; Fairbank and

Hamilton, as described in Boughn et al. 1974); and third-generation detectors are

being discussed. The third generation should be able to detect and study the

gravitational-wave bursts generated several times per year by supernovae in the

Virgo cluster of galaxies. Detectors with other designs may succeed in

detecting waves from pulsars [see, e.g., Braginsky and Nazarenko (1971)]

and from near-encounters of stars in dense star clusters [gravitational

bremsstrahlung; see. e.g., Zel'dovich and Polnarev (1974)].

And, of course, totally unexpected sources may be detected. [For reviews

of the prospects for gravitational-wave astronomy see Misner (1974), Rees

(1974), and Press and Thorne (1972).]

In preparation for the era of gravitational-wave astronomy, our

Caltech research group has embarked on a new project: We seek (1) to elu-

cidate the realms of validity of the standard wave-generation formulas;

(2) to devise new techniques for calculating gravitational-wave generation

with new realms of validity; and (3) to calculate the waves generated by

particular models of astrophysical systems. Throughout this project we

shall confine ourselves to general relativity theory.

Most past calculations of gravitational-wave generation use one of

three formalisms: (1) "linearized theory" or its quantum-theory analogue;



(2) the "quadrupole-moment formalism"; (3) "first-order perturbations

of stationary, fully relativistic spacetimes."

"Linearized theory" is the formalism obtained by linearizing gen-

eral relativity about flat spacetime [see, e.g., Chapters 18 and 35 of

Misner, Thorne, and Wheeler (1973)--cited henceforth as "MTW"]. It is

also the unique linear spin-two field theory of gravitation in flat space-

time--and as such it has a simple quantum-theory formulation. [For ref-

erences and overview see, in IM4T, §7.1, Box 7.1, and part 5 of Box 17.2].

Linearized theory is typically used to calculate wave generation when the

source's self gravity has negligible influence on its motions (e.g., waves

from spinning rods and from electromagnetic fields in a cavity). In this

paper we shall devise a new wave-generation formalism valid for any system

with small but non-negligible self gravity; and in Paper III (Kovrcs and

Thorne 1975) we shall use that formalism to calculate the gravitational

bremsstrahlung produced when two stars fly past each other with large im-

pact parameter, but with arbitrary relative masses and velocities.

The "quadrupole-moment formalism" (in which the wave amplitude is

proportional to the second time derivative of the source's mass'quadrupole

moment) dates back to Einstein (1918), and has been canonized by Landau

and Lifshitz (1951). The derivations of this formalism which we find in

the literature are valid only for systems with slow internal motions and

weak (but non-negligible) internal gravitational fields [see, e.g., the

post -Newtonian derivation by Chandrasekhar and Esposito (1970), the

matched-asymptotic-expansion derivation by Burke (1971), and the de Donder-

gauge derivation by Landau and Lifshitz (1951) as made more explicit in

Chapter 36 of MTW]. However, a detailed analysis given in Paper II

(Thorne 1975) shows that only the slow-motion assumption is needed: the



quadrupole-moment formalism is valid for any slow-motion 
system, regard-

less of its internal field strengths. Paper II also extends that formal-

ism to include the radiation produced by all 
of the source's other

moments (both "mass" moments and "current" moments); 
and it derives

formulas in terms of the moments for the near-zone 
fields, the radiation

field, the radiation reaction, and the energy, momentum, 
and angular

momentum carried off by the waves. In a forthcoming paper Thorne and

Zytkow (1975) will use the extended 
formalism of Paper II to calculate

the "current-quadrupole" gravitational 
waves produced by torsional oscil-

lations of neutron stars.

"First-order perturbations of stationary, fully relativistic 
space-

times" is a technique that has been used 
extensively in recent years to

analyze waves from "fast-motion" 
oscillations of black holes and neutron

stars, and from particles moving in the 
Schwarzschild and Kerr gravita-

tional fields. [For reviews, see Press (1974), Ruffini (1973) 
and 536.5

of MTW; see also the recent paper by Chung 
(1973).] It is not yet clear

whether our project will delve into this technique.

b) Overview of This Paper

In this paper we confine attention to systems 
with weak internal

gravitational fields. Section II rewrites the exact Einstein field 
equa-

tions in a non-covariant form ("de Donder form") 
that is amenable to weak-

field approximations. Section III gives a systematic account of 
approxi-

mate, weak-field formalisms based on the 
exact de Donder form of the field

equations--including the accuracy of 
the various formalisms and their re-

lationships to each other. Section IVa applies the analysis of Section

III to astrophysical systems, and concludes that, when analyzing their
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structure and evolution, one must typically calculate the stress-energy

tensor 2T  and gravitational field h with accuracies:

u'3 00 2
(error in 2 T") /2T 2

-0

I(error in i h -  h I < £

E - (typical value of h-  inside source)

r (mass of source)/(size of source).

Section IVa also concludes that the external gravitational field 2h

must typically be calculated to accuracy

. 2001 2
T(error in 2 h ) / 2 2

if one desires reasonable accuracy in the radiative part of that field.

Section IVb presents a "post-linear" formalism for calculating a

system's structure and evolution (2T and 1h ) to the desired accuracy;

and Section IVc derives a plug-in-and-grind formula for the higher-

accuracy external field (2 h ), which contains the radiation. Section V

shows how the resulting formalism, when applied to slow-motion systems,

reduces to the standard "quadrupole-moment formalism".

We recommend that, before tackling the rest of this paper, the

reader peruse Section VI. That section summarizes our post-linear for-

malism and our formula for the external (radiation) field.

The "guts" of this paper, in terms of complex calculations, reside

in the Green's-function manipulations of Section IVc. Our particular way

of handling the Green's functions is motivated in Appendix A, and has been

influenced by the following papers: De Witt and Brehme (1960) (exact Green's
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functions for scalar and vector wave equations in curved spacetime);

Robaschik (1963) (exact Green's function for tensor wave equation in

curved spacetime); John (1973a,b), Bird (1974) and especially Peters (1966)

(Green's functions in weakly curved spacetime). Although these papers had

much influence on us, our specific manipulations are so different that we

have found it impossible to trace the details of that influence in our writeup.

II. EXACT GENERAL RELATIVITY, REWRITTEN IN "WEAK-FIELD LANGUAGE"

We begin by writing the exact, nonlinear Einstein field equations in

an arbitrary coordinate system in the form [§20.3 of MTW; §100 of Landau

and Lifshitz (1962)]

HLL , = 16r(-g)(TPV + tL (1)
L-L ,a L-L

where "L-L" means "Landau-Lifshitz", and where

H _ava v ac acv PB (2a)
HL-L - - (2a)

-(g)v 1/2 , (-g) = -det g 1 -det I I ; (2b)

-1 af 2q cA Slp 1 cXS Xv u
tL-L [16(-g)] , 9 ,X Al2 g ,p ,v

a(g g X av lip vp (2c)ax
(g glv P + g g g ,pggxg (2c)

1 olh c43pXlvT peor
+ (2g g -g gg )(2gpgoT -poagvT ,X (2)

The equations of motion for the material stress-energy tensor T follow

directly from the field equations (1) and can be written in the equivalent

forms

T = 0, [(-g)(Ta + tL)] ,8 =0 (3)
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[Here and throughout this series of papers we use the notation and sign

conventions of 1TW; in particular c= G = 1; ga8 and g are the com-

ponents of the metric; comas and c's denote partial derivatives, Y =

a Y = 3Y/x ; semicolons denote covariant derivatives with respect to the

metric g ,; and our signature is (-+++).]

Now, and henceforth in this paper, we impose three restrictions on

our analysis: (1) We confine attention to systems with "weak internal

gravity"--i.e., to systems throughout which one can introduce nearly Lorentz

coordinates. (2) We confine ourselves to "isolated systems"--i.e., to sys-

tems that are surrounded by a region ("local wave zone"), much larger than

a characteristic wavelength of the emitted waves, in which all waves are

outgoing and in which external masses have negligible influence on the

gravitational field. (3) We restrict our analysis to the interior of the

source and its local wave zone, and throughout these regions we use nearly

Lorentz, asymptotically flat coordinates, specialized to satisfy the deDonder

gauge condition.

Mathematically, these restrictions state that the "gravitational

field"

hV (4)

has the properties

<< 1 everywhere, (5a)

I I l/r as r + m, where r = (x2+ y2+ z2)1 / 2  (5b)

is devoid of incoming waves at r -- m (5c)

S= 0 .(deDonder condition). (5d)

With these restrictions, the exact Einstein field equations (1) take on the
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form

L h = -16(-g)1/2(T1V + tLv) (-g)-/ 2  a - (6)

Here []s is the wave operator for scalar fields in the curved spacetime

described by the metric gaB

[]s -1/2 a 1(g)/2 a (7)

[Appendix A, which is best read after one has finished reading the rest of

the paper, explains why we write the field equations in terms of El
rather than in terms of some other wave operator such as [Ef -a CL

(the flat-space wave operator) or Et (the curved-space wave operator for
tensor fields).]

Equations (2b)-(7) are the exact, nonlinear equations of general

relativity for any isolated, weak-field system--but they are written in a

very special coordinate system rather than in generally covariant form.

Because << 1, we can express each quantity in our formalism,

except T , as a power series in hI . When writing down such a power

series, it is convenient to raise and lower indices of h with the

Minkowski metric a B - diag(

- n _n-  , h- q Tloid h h etc. (8a)

It is also convenient to define a "trace-reversed" gravitational field

hp  by

h _ - , (8b)

and to raise and lower its indices, like those of hn , with the Minkowski

metric. Note that equation (8b) implies

7



hh h V = V hV _ h n v  (8c)
a 2

To derive the explicit power series expansions for , g , g

etc., one can proceed as follows. Equation (4) is the desired expansion

for g . It contains only two terms:

]V ]iv_ VV (9a)

The expansion for the metric determinant (-g) is obtained by inserting ex-

pression (9a) into the second of equations (2b):

(-g) = -det I l V = -det nlrliV -

- 1 2 -a- -31-h+ [() -h h ]+O[(h) J . (9b)
2 a8

The contravariant components of the metric are then obtained by inserting

(9a,b) into the first of equations (2b)

PV -1/2 lIv
g (-g) u

f-lY _ 1 - iy I ,-[ l i ]+ 2 o-[( 31 - ( h - hh +(h [()+2 h + +o (h)

(9c)

and the covariant components are obtained as the matrix inverse of these

contravariant components:

- 1 -a 1 - 1 2 _
g = 1 + hP - h P +h h h, P 8 (h 2h )+ 0 3 .

(9d)

The connection coefficients FP which appear in the usual expression

TlV = 0 for the equations of motion, are obtained by inserting expansions
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(9c,d) into the standard formula

9r P 1 Vly(g
f g =2 + gy a - gaBy)

S+h - )  (6 h + 6P h T I)-rn') + O(h) 2  (9e)2 ( ,S 8,C -4 O ,0 6 hc4 a

Similarly, the scalar-wave operator ]s is obtained by inserting expan-

sions (9b,c) into equation (7), and using the deDonder gauge condition

(5d) to simplify:

Dl = 38 a - ( 1- n )a + o [() 2 (9f)

and the components of the Landau-Lifshitz pseudotensor are obtained by in-

serting expansions (9a,b,c,d) and the deDonder condition (5d) into equa-

tion (2c):

B 61 .)-1( 1 -Xv -1 u vp -t -ax
t = (167) n n h h + n n h h
L-L 2 ,p ,V ,V ,P

-( ,In h h + ,p ,X (9g)

1 (2nclAp -S.Ap)(2- pVT}+0[()3]
-8 - niXn) (2nvprOl -r npn VT) h ,

Henceforth in this paper we shall regard g , (-g), g , gl,

S  s and tL_ as shorthand notation for the infinite power seriesn s L-L

expansions, whose first few terms are shown in equations (9). Given these

expansions, the full content of general relativity is embodied in the equa-

tions of motion for the matter

9



If the system is several lumps with masses m and sizes Z , separated

by distances b >> k (e.g., a binary star system or two stars flying past

each other), then

E ~ m/b if one is interested only in the relative motions of the lumps

E % m/Z if one is also interested in the internal structure and
dynamics of the lumps.

We shall characterize every weak-field approximation formalism by

two integers nT and nh These "order indices" tell us the magnitude

2
of the errors made by the formalism:

Note that all of the ITl-l are TOO , and consequently all of the

hI are n. Tnis fact dictates the form of equations (12).

001 nT
I(errors in T')/ TOO T (12a)

I (errors in h') / h E (12b)

For example, a formalism of order (nT,n h ) = (1,1) makes fractional errors

of order E in both the stress-energy tensor and the gravitational field,

while a formalism of order (2,1) makes fractional errors E in T and

F in h

Errors in hI, when fed into the equations of motion (10a), produce

errors in TpV; and similarly, errors in T , when fed into the field equa-

tions (10b), produce errors in h . This feeding process places con-

straints on the order indices (nT,nh) of any self-consistent approximation

formalism. The constraints are revealed explicitly by an order-of-magnitude

analysis of equations (10a,b):

11PRECEDING PAGE BLANK NOT
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Consider a weak-field system with characteristic field strength

E and characteristic length-time scale Below each term of equations

(10a,b), write the order of magnitude of that term:

T = -_ T a  F TP
Sav cv

(13a)

00 00 00
(Tn /Z) (El/2) (T0  (ElZ) (T 0 0 )

V-l =-16(-g)1/ 2 TPv -16T(-g)1/2 tL-L _ -1g)/2 (13b)

(E/2) TOO (2/2) (2 2/z 2

Equation (13a) shows that fractional errors n in h produce frac-

nhy1 nT nh+1
tional errors E in T ; i.e., E_> i.e.,

n T < nh+ . (14a)

Equation (13b)--together with the order-of-magnitude field equation

T0 0 0 /u2--shows that fractional errors n T  in Tiv produce fractional
n nh  nT

errors C T in h-i ; i.e., E > E ; i.e.,

nh < nT (14b)

Equations (14a,b) can be restated as the following constraints on the order

indices of any self-consistent approximation formalism:

nh = n T- 1 or n h = n . (15)

In other words, the order (nT,nh) of any approximation formalism must be

either (n,n-l) or (n,n) for some integer n

Suppose that a specific system has been analyzed using an approxima-

tion formalism of order (n,n-l). Denote by nT (xt) and (n-1)~ (x) the

12



explicit expressions obtained in that analysis for the system's stress-

energy tensor and gravitational field. From these expressions it is

straightforward to generate an "improved" gravitational field n l(x)n

with fractional errors 6 . The key to doing this is the structure of

the field equations (10b): In these field equations, fractional errors

of order En- in hV  produce fractional errors of order n in both

[3s and the expression

- 16i(-g)1/2 (TiV + tL ) - (g)-1/ 2 i Ba h
L-L ,a

Hence, h~V (t,x) satisfies the differential equation
n

3 [-16-T(-g)1/ 2 (T +t ) - ()-1/2 h-a h,
(n,n-I) s n (n,n-l) L-L , a

(16)

Here the prefix (n,n-1) means that a quantity is to be calculated, with

fractional error En, using T and (n-1) This inhomogeneous,n (n-l)

linear wave equation for Y can be solved using the retarded scalar

Green's function for curved spacetime (DeWitt and Brehme.1960):

the retarded scalar Green's function for the curved

(n-1)G(P',P) spacetime with the metric (n-l)gpv of the (n,n-l) (17)

approximation--a Green's function with fractional
errors En

The result is

h (P) = (n,n-1) 16r(-g) (TU + t L) + , P(P',P)d x'

(18)

13



This paragraph can be summarized as follows: Any approximation formalism

of order (n,n-1). when augmented.by equation (18) for nh becomes an

approximation formalism of order (nn).

Special relativity and linearized theory provide a simple example

of the above remarks: Special relativity is the approximation formalism of

order (1,0) which one obtains by the extreme truncation process of setting

Jv = 0 in equations (9) and (10):

h 0 0 g n T = 0 . (19a)
0 0 tL-L 0 , ,

The retarded scalar Green's function for a space with metric 0 = v

is

(4) 1 p p' a 0'
G(P(4T)- 6 ret (x -x )(x -x )] . (19b)

(Here 6ret  is zero if P lies in the causal past of P', and it is the

Dirac delta function otherwise). Hence, equation (18)--by which one must

augment special relativity in order to obtain a formalism of order (1,1)--

has the form

(P = 4)6 2 npa(x -x )(x -x )Jd x '

1 f1 ret 2 p

~ ~ dx '  (20)

Ix-x 'l

The resulting (1,1) formalism [equations (19) augmented by equation (20)]

is the "linearized theory of gravity"; [see, e.g., §7.1, Box 7.1, and

Chapter 18 of MTW.]

Newtonian theory and the "quadrupole-moment formalism for wave gen-

eration" are another example. Newtonian theory is the weak-field formalism

14



of order (2,1) which one obtains by not only truncating each series that

appears in equations (9) and (10), but by also imposing the slow-motion

and small-stress assumptions

2 TOj /T00 2  Tij/T 0 0 1 , , (21)

1/2
(size of system)/(characteristic time scale of changes) r1/2

Equation (18), by which one augments Newtonian theory in order to obtain

a formalism of order (2,2), has the form, when evaluated in the radiation

zone

hij(t,x) = (2/r) ijTT(t-r) = (gravitational radiation field) . (22)2 ij ij

Here I.. is the reduced quadrupole moment of the source, and TT

denotes "transverse-traceless" part. This is the standard wave-generation

formula of the quadrupole-moment formalism; see Chapter 36 of MTW.

IV. WAVE GENERATION BY A WEAK-FIELD SYSTEM

a) Motivation

Weak-field systems are of two types: those with negligible self-

gravitational forces (rotating laboratory rods; microwave cavities; etc.),

and those whose internal motions are significantly influenced by self-

gravity (pulsating stars; binary star systems; etc.).

For a system with negligible self-gravity, special relativity gives

a fairly accurate description of the internal motions; and, consequently,

linearized theory [the (1,1) formalism obtained by attaching equation (18)

or (20) onto special relativity] gives a fairly accurate description of

gravitational-wave generation.

15



For most weak-field astrophysical systems, self-gravitational

forces are important. In this case, when analyzing a system's internal

motions, one must use a formalism of order (2,1); and when calculating

the waves those motions generate, one must augment the (2,1) formalism

by equation (18), thereby raising its order to.(2,2). 3 If the system has

3
in very special cases second-order gravitational forces may be as impor-
tant, for the system's motions, as first-order forces. An example is a
radially pulsating, weak-field star with adiabatic index very near 4/3
(Chandrasekhar 1964); see also the discussion accompanying equations (61)
below. When analyzing such systems one needs formalisms of order (3,2)
and (3,3).

slow internal motions and weak internal stresses, Newtonian theory [order

(2,1)] will suffice for analyzing its motions, and the quadrupole-moment

formalism [order (2,2)] will suffice for wave generation. However, for

analyzing fast-motion systems (e.g., two stars flying past each other with

high velocity and deflecting each other slightly--the relativistic brems-

strahlung problem), one needs unrestricted (2,1) and (2,2) formalisms. The

objective of the next two sections is to derive such formalisms.

b) The Post-Linear Formalism

A weak-field formalism of order (2,1), unrestricted by any constraints

on velocities or stresses, can be obtained by truncating equations (9) and

(10) at the appropriate order:

S = 1v (23a)

(-1 ) =l- 1 = 1 l (23b)

16



1i h (where h 1 - 2 1 )  , (23c)

1g PV + lh , (23d)

S 1 (hp + h h 'P) , (23e)
1 aB 2 1 a,B 1 B,a 1 aB

1s 1P0 s =(rB _ lhaB) (23f)

,) laf lh h + ? lh-- I
L-L 2= (16) p ,p1 ,v Ap 1 , ,p

2p ,pl , l , In ,

VV 1 ,x 1 ii

TPV p TaV T (24a)
2 T v 1 v v 2 T (24a)1 av

aB 1 v = -16 2T
P  (24b)

1 ,a 2

We shall refer to the formalism described by these equations as the

"post-linear formalism". To analyze a system using the post-linear formal-

ism, one must first specify the functional dependence of the stress-energy

tensor 2T on the system's nongravitational variables (e.g., density,

pressure, velocities, electromagnetic field tensor, --.) and on the gravi-

tational field 1 h ; and one must then solve equations (24a,b) simultane-

ously for the system's motions (2 T accurate up to fractional errors £2)

and for the gravitational field (1 accurate up to fractional errors

%£ ). Paper III will carry out such a calculation for the motion of two

stars of arbitrary relative masses and velocities, which fly past each

other with large impact parameter.

17



c) The Post-Linear Wave-Generation Formalism

Having calculated a system's internal structure and motions using the

post-linear formalism, one can then calculate the gravitational waves the

system emits, 2 vh , by evaluating expression (18). In evaluating (18) one

needs an explicit expression for the retarded Green's function 1G(P',P) as-

sociated with the metric 1 = i u + 1h In the next subsection (§i)

we derive 1 G(P',P); then in §ii we place constraints on our system which

simplify 1G(P',P); and finally in §iii we use IG(P',P) to evaluate the wave

field hV .

i. The Green's Function G(P',P)

We shall obtain 1G(P',P) by taking the weak-field limit of the exact

Green's function G(P',P) for a space described by an exact metric gP .

The exact Green's function is formally rather simple, so long as the congru-

ence of geodesics that emanate from the source point P' does not get

focussed so strongly along the future light cone of P' that geodesics cross.

Henceforth we shall assume "no crossing of geodesics on the light cone." Later

[eqs. (48), (48'), (48") below] we shall examine the constraints placed on

the radiating system by this "no-crossing" assumption.

DeWitt and Brehme (1960) have derived the exact Green's function

G(P',P) for the case of no crossing. Their Green's function consists of a

"direct part" and a "tail"

direct tail
G(P',P) = Gd i r e c t + G tail (25)

The direct part is nonzero only if P lies on the future light cone of P'

[denoted J+(P')]. By virtue of the "no-crossing" assumption, when P is

near + (P') there is a unique geodesic from P' to P with a unique squared

length

18



orld function", 1 for timelike geodesic )(prop e r distance

P ) Synge fun(1960)cti 2 for spacelike geodesic 'along geodesic

(26)

= a in notation of DeWitt and Brehme 
(1960).

direct

Because J+(P') is characterized by =0 , Gd ir e c must have the form

dr [(P' ,P) ]
Gdirect(p' ,p) (4)- (P',P)]1/2 ret (27)

where 6re t is the Dirac delta function 
on and near (P'), and is zero on

and near the past light cone [J (P')]. The quantity A(Pt,P) is an ampli-

tude factor which would be 
unity in flat spacetime, but 

in curved spacetime

is given by

det 3 2m/9x (28)

A(P',P) 
=  1g(P) g(p,)l/

2

We shall use an expression 
for the tail different from, but equivalent

to that given by DeWitt and Brehme. 
To derive our expression we insert 

equa-

tions (25) and (27) into the wave equation

_i/4 ( 00 ' i' 2 2' 3 3'

]s G(P',P) = -[g(P)g(P') 6(x -x ) (x ) (x ) (x )
(29)

The result is

I Gtail _(4) -  O 1 / 2 ) 6() + [2V 1/2+ s)/2
S

+ (VQ) 2 A1 / 2 6"(2)} , (30a)

where 6' and 6" are the first and second derivatives 
of the retarded Dirac

delta function, V is the 4-dimensional gradient operator, 
and V. is co-

variant derivative along the 
4-vector

19



K H V . (30b)

[Here and below'we suppress the subscript "ret" on 6(2).] We then manipu-

late expression (30a) using the relations

6"() = -26'() , (V) 2 = 2 , - 4 -A - 1 VA (30c)

[The first of these is a standard identity for Dirac delta functions; the

second and third are eqs. (1.11) and (1.63) of DeWitt and Brehme (1960)].

The result is

tail (4-17 A 1/ 2 ) () . (31)
s s

We then use relations (30c) and the relation A(P, P) = 1 to rewrite this

in the form

0 [Gtail (4-1 (1-A'/2) 6(l i +(4)-l( K Zn A)6'() . (32)

tail
Equation (31) tells us that G jumps from zero outside the light cone

to a finite value inside the cone, without having any singularities on the

cone. Equation (32) allows us to write (restoring.the subscript "ret")

0 if P' I (P) (33a)

G ai(P',P) = -(4)) [9,n A(P',P")]J ,, [(P',P")]' 6' (P,P") x
f' ll ret[

x G(P",P)[-g(P")]l / 2 d 4 x" if P' I(P) . (33b)

Here I (P) means "the interior of the past light cone of P;" and condi-

tion (33a) suppresses the unwanted light-cone part of (33b) [i.e., sup-

presses (4R)-1 (-A/ 2) 6 ].
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Equation (33)is the form of the tail which we shall use. This form

was suggested to us by the work of Peters (1966).

We now specialize the above equations for the retarded Green's func-

tion to the case of a weak gravitational field Ig = T v + 1h , begin-

ning with equation (26) for the world function. Let A be an affine param-

eter along the geodesic linking P' to P

0(X) - geodesic with coordinates (A ;

() = P' , ) = P, o1 (34)

Then equation (26) can be rewritten in the form [cf. Synge (1960), p. 47]

f(P',P) = gpv (d. /dX) (d•/dIX) di (35)

The right-hand side is actually an action principle for the geodesic equa-

tion [cf. MTW, Box 13.3]. Therefore, if we evaluate the integral along the

"straight line"

O((): (A) Ex + X(x( - x ' ) (36)

(see Fig. 1), which differs by a fractional amount of O(E) from the true geo-

desic C(A), we will make fractional errors in Q of 0(E2). Such errors are

acceptable in 1G(P',P), since its frational errors are also O( 2 ); cf., eq.

(17). The result of integrating expression (35) along the slightly wrong curve

0 CX) is

1 (P' , P) = 0 Q(P
' " P ) + y(P',P) (37)

where

S0(P',P) Xa, X (38a)
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y(P',P) IX hdX , (38b)

0

X x - x (38c)

Equation (37) is the desired expression for the world function. Turn

next to the amplitude factor A(P',P). Either by direct calculation from

eqs. (28), (23b), (37), (38), and (B12), or by invoking eq.- (95) on page

63 of Synge (1960), one arrives at the expression

det Ii2]8,II 1,-det : (1 - 1h -  i 1h ') det /I1 , [[
iA(P',P) ,h-h det Q,

g 1  1/2 2 1 2 1 (39)

= i + 2ca(P',P)

Here

a(P',P) i X X j X(l-X) dX (40a)

C
0

where IRcB is the Ricci tensor, accurate to first order in lh :

R = 1 h (40b)
1 aB 21 aSp

In eq. (39) we have simplified notation by using a prime to denote quanti-

ties evaluated at P' , i.e., 1h' h(P') while 1h 1h(P) . Henceforth

we shall reserve primes for this purpose--except that 6' and 6" are

still derivatives of Dirac delta functions.

Turn next.to the "source term" (in A) ,, for the tail (eq. 33).

The tail itself is of 0() compared to the direct part of the Green's

function; therefore we can permit fractional errors of 0(E) in the tail--

which means we can use the zero-order value of Q' in the source of the
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tail:

0(P ',  '  = x ' -x Ex (41)

By combining this with equation (39) and by using equation (B7) of

Appendix B, we bring the source of the tail into the form

[in A(P' ,P")] , [0(P' ,P")] '
" =  (P' , PI) , (42)

where

(P',P") XI 1 R. 3 X2 dX ( 4 3a)

and 0" is the "straight line" from P' to P" (see Fig. 1)

0 = x + XX (43b)

Turn, finally, to the propagator G(P",P) and the volume element

(-g") 1 /2 d 4 x" which appear in equation (33) for the tail.. Because the

tail is of O(e) compared to the direct part of the Green's function, we

can ignore all curved space corrections in the amplitude of the propaga-

tor (but not its phase), and in the volume element:

1/2 4 -1 4
G(P",P) (-g") d x" = (4) r [ 1(P",P)] d x' (44)ret 1

in expression (33b) for 1
G tail

All of the pieces for the first-order Green's function are now at

hand. By combining them [eqs. (25), (27), (33), (39), (42), and

(44)] we obtain the following result:

G!Gdirect tailG (P ' ,P ) = 1 + t, (45a)
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G d i re c t  (4 - 1 [+(P',P)] 6retl(P',P)] , (45b)

o if P' I-(P)

Gtail I
Gt = (47 - 2  B(P',P") 6et (P',P")] ret [Q(P",P)] d4 x "

if P' E I-(P) • (45c)

Here 1Q(P',P) [and similarly 1(P',P") and 1Q(P",P)] is given by equa-

tions (37) and (38), a(P',P) (the "focussing function") is defined by ex-

pressions (40), and (P',P") (the "tail generator") is defined by expres-

sions (43).

ii. Constraints Designed to Simplify the Green's Function

Expression (45) for the Green's function is valid only if geodesics

emanating from P' fail to cross on and near J+(P'). Crossing would be

caused by gravitational focussing; and at any crossing point, the exact

amplitude factor A(P',P) would diverge. Thus, the criterion for no cross-

ing is finiteness of A along J +(P').

Consider our first-order expression (39),(40) forlA. Evaluate it in

the mean rest-frame of the source, with coordinates centered on P' so that

X = rn , n 1 , n = (unit spatial vector pointing from P' to P)

r = (spatial distance from P' to P)

S= r/r E (fractional distance from P' to P) ; (46)

and invoke the first-order field equation 1 Ra ( 1 Ta -a S IT). The

result is
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1A(P',P) = 1 + 2c~

r
1 (47)

0

This expression for A can never diverge if the source is bounded, because

once the integration point r gets outside the source, 1T B vanishes and

A stops increasing. However, if the focussing function a approaches

unity inside the source, then second-order and higher effects will come into

play. As one moves out into the vacuum beyond the source, those second-order

effects will be essentially those of the "focussing" or "Raychaudhuri"

equation; they will produce a divergence. Thus, the constraint

CONSTRAINT: a(P',P) << 1 for all P' and P (48)

is necessary for the validity of the first-order analysis, and simultane-

ously protects us from "geodesic crossing."

For a system that is roughly homogeneous with mass M and linear

size L , equation (47) gives

a (M/L) ' E << 1 ; (48')

so there is no problem in satisfying the constraint (48). However, for a

highly inhomogeneous sytem (lumps of mass m and size k , separated by

distances b >> Z), and for rays originating in one lump and passing through

another, equation (47) gives

a ' b(~m/13) (b/)(m/£)

In this case the constraint (48) is significant: it says that to avoid
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too much ray focussing, the lumps must not be too far apart

(b/Z) << (Z/m) 1 06 (Q/R )(Mo/m) (48")

The Green's function (45) would be much easier to use if, throughout

it,we could replace the first-order world function 12 by its zero-order

approximation 0 = XX . Let us examine 1L [eqs. (37) -and (38)]

in the rest frame of our source, for points P on or near J (PT):

10 0
1(P',P) = (X +X)[-X + X+2y(P',P)/(X +X)]

0
= X(-X +X+ At) (49a)

where

X jX = (distance from source to field point) (49b)

At y- (P' ,P)/X = ("Shapiro time delay") . (4 9c)

For field points P far outside the source, the dominant contribution to

the Shapiro time delay is the asymptotic "l/r" field of the source. It

produces a huge delay of

A - 2M kn(X/L)
- = [Shapiro time delay due to

[asymptotic field of sourcej

M E (mass of source) (50)

L (characteristic size of source)

This delay is time independent and is independent of where inside the

source P' is located (aside from a negligible piece of size % 2ML/X);

therefore its only effect on the radiation is to delay the arrival time

at a given radius. Henceforth, for ease of calculation, we shall remove
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this constant delay from the argument of our Green's function. We can

always reinsert it at the end of the calculation if we wish. 
With this

constant delay removed, we can rewrite 12 as

(P' ,P) = X[-O + X + (AtS - A)pp]

SO(P',P ) + [y(P,P) + AXU ] (51)

for P' inside the source and P far outside it ,

where

U = P /M = 4-velocity of source; X U = -X . (52)

The remaining "internally-produced" delay between P' and P , AtS- A

is of the same order of magnitude as the total delay between 
two internal

points P' and P":

(At S - A)p'p (At S - A)pp (At s)pIP 1  lh00 dr

across source

' M for homogeneous source (53)

% m kn(b/Z) for lumpy source

Henceforth we shall assume that this internal time delay is small com-

pared to the characteristic timescale on which the source 
changes--i.e.,

small compared to the characteristic reduced wavelength X of-the radia-

tion emitted,

CONSTRAINT: (AtS)internal m kn(b/Z) << (54)

[Example: If k is 100 times larger than the Schwarzschild radius, 2m,

of a lump, then b/k can be as large as exp(10) ' 2 x 10 without
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causing problems. Another example: If > b (which is the case for brems-

strahlung), and if k >> m (which is required for fields to be weak), then

the condition b n 2 (separation of lumps bigger than size of lumps) guarantees

that constraint (54) is satisfied.]

The constraint (54) allows us to expand our delta functions 6(I

in powers of the internal time delay. Discarding terms that are quadratic

and higher-order in (AtS)internal/ , we obtain for the Green's function (45)

1G(P,,) = iGdirect + Gtail (55a)

Gdirect(P',P) = (4 x)
-1  ret a X ) + a(P',P) ret X O

ret 2  ret 2

+ [y(P',P) + Ax'U ret( xa (55b)

o if P' I-(P)

tail p, -2 ~ P) 'X "
1G (p',P) = _(4 -2  (p , ret 2) ret -

if P I (P)

In these equations

XaX xC- x , x , X" xa- x' (56)

see figure 1.

Equations (55) are our final form for the scalar Green's function

in a space with linearized metric i9 v + hn . This Green's func-

tion has fractional errors

i(errors in 1G)/ 1GI " Maximum of fe2,a~,[(AtS)internal/A]i} in general,

28

2 for most sources (57)

and it has been stripped of its asymptotic time delay (eq. 50).
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iii. The Gravitational-Wave Field

By inserting expressions (55) for 1G(P' ,P) into equation (18) we ob-

tain the following expression for the gravitational field far outside a

weak-field source:

2 - h + h + v2 F 2 hTR+h +2hTL ; (58a)

2D = 4 I ret( Xa ) na 2T (P
') [1 - lh(P')] d4x' , (58b)

2 = 4 a(P',P) ret X na ) TV(P') d x' (58c)
2 F f ret 2 cB 2

2'TR 4 [(P' ,P) +A ] retX 2 T(P') d 4 x' , (58d)

x 2T(P ') dx" d4x'  . (58f)

2 ff e trt

the future light cone of the source and zero on the past light cone; X ,

XL _ - Lv C" " CI-" (P)

a a I

X =x-x , X - x - x , X = x - x ; ( 5 9a)

Her, ,e P and y are defined by integrals of the first-order Ricci tensor

the and of the metric perturbation h eroalong the straight line between

two points
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t(P',P) = f R ,(x + XX ) X(1-X) dX , (59b)

0

B(P',P") I= XX IRf (x + hX ) X2 dX , (59c)

0

1

Y(P ',)= 1 X lh h (xp ' + AX) dl (59d)

0

-AXaU is that portion of y which is produced by the asymptotic, l/r,

external field of the source

_a a )=( Shapiro time delay ( distance from source
a a produced outside source point to field point

(59e)

(see §ii above); and P' E I-(P) means that the integration (58f) is per-

formed over field points P' that lie inside but not on the past light cone

of P

Each piece of the distant gravitational field 2h has its own

physical origin and significance:

2hD is the "direct field." It is produced by the stress-energy

2 T PV and propagates as though spacetime were flat. It includes the zero-

order, non-radiative, "1/r" field of the source, and also that portion of

the radiation produced "directly" by the source's motions. If the internal

gravity of the source has negligible influence on the source's structure and

evolution, then all other parts of 2h  will be negligible compared to the

direct field ("linearized theory"; cf. eq. (20) and the associated discus-

sion).

2Th-is the "focussing field". It is the amount by which the direct
F

field is augmented due to focussing as it passes through regions of nonzero

Ricci curvature (nonzero stress-energy).
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2hiVR is the "transition field" [first discovered in the equations

of general relativity by Chitre, Price, and Sandberg (1973,1975); analogue

of "electromagnetic transition radiation", Ginzburg and Frank (1946)]

It is the amount by which the direct field changes due to Shapiro-type

time delays within the time-varying source.

2 is the "whump field." It is the field generated by "gravi-

tational stresses" t + (167r) h h We have given it the
1 L-L 1 ,a 1 ,p

name "whump" because in our minds we have a heuristic image of gravita-

tional stresses linking various pieces of the source, and going "whumpity-

whump-whump" as the source contorts and gyrates.

2 hL is the "tail field". It is generated by the direct field in

those regions where focussing has deformed the geometry of the direct

wave fronts.

Although it is useful, heuristically and in calculations, to split

2h into these five pieces, one should not attribute too much physical

significance to each individual piece. For example, no individual piece

satisfies the Einstein field equations or the deDonder.gauge condition.

However, the five individual pieces combine in such a way that their sum

does satisfy the field equations and gauge condition; see Appendix C.
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V. SLOW-MOTION LIMIT OF THE WAVE-GENERATION FORMULAS

Consider a weak-field system which has slow 
internal motions and

weak internal stresses. Characterize it by the following parameters:

L E (size of system)

-E (characteristic time-scale of system) 
= (reduced wavelength

of radiation)

(60)

M E (mass of system)

v (TOjl /T 0 0 )max = (maximum internal velocity)

S2  ( iJ/TOO)max = maximum of (stress)/(density)

Chapter 36 of MTW derives the quadrupole-moment 
formalism for gravitation-

al wave generation under the following assumptions 
(eqs. 36.18 of Ti )

L/ << 1 which implies v << 1 ; (61a)

M/L << L/ , S << L/ . (61b)

Constraint (61a) is the standard slow-motion assumption--the only assump-

tion truly necessary for validity of the quadrupole-moment 
formalism (see
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Paper II ). Constraints (6!b) say that the motion must not be too slow

if a weak-field calculation is 
to yield the quadrupole-moment 

formalism.

In terms of the characteristic frequency 
w = 1/ this "not too slow"

assumption says

2 >> (M/L) (M/L 3 ) , 2 >> S2 (S/L)2 (61b)

A violation of these assumptions occurs, 
in dynamical systems, only when

the gravitational and stress forces 
counterbalance each other so precisely

-U can affect the motion significantly[ 
cf.

that second-order gravity, 2
h , c

Chandrasekhar (1964)]. In this case an analysis based 
on the post-linear

approximation cannot possibly 
give a correct description of the radia-

tion.

It is instructive to see how the post-linear 
radiation formulas (58)

of this paper yield the quadrupole-moment 
formalism, when applied to a

system satisfying constraints 
(61).

We begin by combining the direct 
and whump fields (58b,e) and 

then

breaking them up again, differently

2 hD + h=  2 F 
(62a)

2h wret I
B 1 8~cB) ) T tLL ) at + dIx ' , (62b)

, 1 va a p, d (62c)

2D2 _ (i/4 ) 6rt2 1- 1 -v ]at

re th h 1P at P d x

We then evaluate expression (62b) 
in the rest frame of the source

2 DW1 - x'l re
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and by carrying out the analysis of MTW 36.10, we bring the spatial

4Note that (-g) 2T + t L) here plays the same role as T1V + tV

in MTW. The key properties which they share are (i) vanishing coordinate diver-

gence; (ii) same role in retarded integral for 2h .

transverse-traceless part of this field into the form

jk 2 2 TT
[2hDW1(t,x)]T = (2/r)(d /dt

2  rjk(t-r)

2 (64)
n (M/r)(L/ ,)

TT
Here -jk is the "reduced quadrupole moment" of the source, and 1jk is its

transverse traceless part. This is the standard quadrupole-moment formula

for the radiation field.

An order-of-magnitude analysis shows that all other parts of our

expression (58) for 2hjk are negligible. In particular, by using the fol-

lowing relations valid for the source's interior

1h00 M/L, h 0j MV/L lhk MS2/L, Tjk= MS2/L3

h h 1k, h j L, /L n M/L, (65a)
1 ,O 1 1 ,j 1

as well as the relations

a M/L , (y + A~ ) rM , (65b)

we obtain for the ratio of each other part to the "DWI" part (eq. 64):

2
2j 1 22 (W1 iTv + << 1 (6 6a)

2

2h hfjk /L- ) << 1 , (66b)
2 (2Dw)L/34
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-k -jk TT k- TT M (66c)
2hTR /(2h 2h/(2hW1) << (66c)

VI. SUMMARY OF OUR "PLUG-IN-AND-GRIND" FORMALISM FOR WAVE GENERATION

Our post-linear formalism for wave generation can be summarized as

follows:

Regime of Validity. The formalism is valid for any system satisfy-

ing these constraints: (i) The gravitational field must be weak everywhere

<< 1 everywhere , (67a)

and the source must be isolated [see discussion preceding eq. (4)].

(ii) Gravitational and nongravitational forces must not balance each other

so precisely as to enable second-order gravity to influence the system's

motions.significantly. (iii) The source must not focus substantially light

rays emitted from within itself. Mathematically this constraint says

lc(P',P) I << 1 for P' any event inside the source,

P any event on the future light cone of P',

(67b)

where a is defined by equation (59b). For further discussion of this

constraint, see the first half of §IV.C.ii. (iv) The "Shapiro time delay"

for light propagation within the source must be small compared to the

characteristic timescale * for internal motions of the source. Mathemati-

cally this constraint says that in the mean rest-frame of the source

(AtS)internal - y(P',P)/ x-x' I << -k (67c)

Here x and x' are spatial locations of events P and P' that lie
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inside the source, P is on the future light cone of P, and Y is de-

finedby equation(59d). For further discussion, see the second half of

IV .C.ii.

Calculation of the System's Motion. For a system satisfying these

constraints one calculates the internal structure and dynamics by using

the post-linear formalism of §IV.B[eqs. (23) and (24)].

Calculation of the Distant Field. To calculate the gravitational

field 2h  in the radiation zone, far from the source, one takes the re-

sult of the post-linear analysis, plugs it into equations(58) and (59),

and grinds.

In paper IIIwe shall use this formalism to calculate gravitational

bremsstrahlung radiation.
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APPENDIX A

WHY USE THE CURVED-SPACE SCALAR-WAVE OPERATOR?

In laying the foundations of our analysis [in and near eq. (6) we

write the Einstein field equations in terms of the curved-space scalar wave

operator s. We choose to do this because the obvious alternatives (the
s

flat-space wave operatorO or the curved-space tensor wave operator[t)

would ultimately lead to complications or dangers in our analysis.

The flat-space operator lf treats the field propagation from the out-

set as though it were on flat-space characteristics (straight coordinate

lines). Because the true characteristics suffer the Shapiro time delay

which involves a logarithm of distance, the use of 0f would lead to logar-

in the radiative field at large r

ithmic divergences^ If one were sufficiently careful, one could remove

those divergences without serious error--but that is a dangerous enterprise.

Even if one succeeded, one would be left in the end with the interesting

effects of focussing, time delay ("transition radiation"), and tail all

lumped into the "whump" part of the field. We prefer to keep them separate.

Consider next the curved-space tensor wave operator

C jV rv z 2ti g + 2R 21(vi )a (Al)
t h a a2R a

[cf. MTW eq. (35.64)]. Because the true propagation equation for very weak

gravitational waves on a curved background is q1 = 0 , it is tempting to

formulate our analysis in terms of Ot rather than 0 . By using 0 we push
t s s

into the "whump" part of 2h lan important physical effect: the curvature-

induced rotation of polarization. In effect, part of our whum field corrects

the error in our direct field's unrotated polarization. Had we used t

rather than 0s, polarization rotation would have shown up in SIV.C.iii as a
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separate piece of the radiation field.

The tensor wave operator has a disadvantage which, for our purposes,

outweighs the above advantage. Suppose that one constructed a tensor

Green's function for 3O
t

Gt Ga( p ot B + gP0g va ' -1/4 6 (x-x') , (A2)

or for any other wave operator with the form

other ; + (any "background" field) v h (A3)
other

That Green's function would have a first-order tail G tal ,P) with

"sources" involving the Riemann tensor [cf. eqs. (43a) and (45c)].

Such a tail would originate everywhere on the light cone of P', whereas

the tail 1
Gtail for our scalar Green's function originates only on rays

that have passed through matter. In practical calculations involving

lumpy sources--see, e.g., Paper IIE--that tail would be as difficult to

calculate as the whump part of the field. We prefer our scalar tail be-

cause of its greater simplicity. By using D s we dump all serious calcu-

lational complexities, for lumpy sources, into the whump part of the field.
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APPENDIX B

LINE-INTEGRAL IDENTITIES

The weak-field Green's function 1G(P',P) used in this paper involves

three integrals a,8,y along"straight lines". In this appendix we take

the line of integration to be

Ex' + , < < , a (Bl)

The three line integrals are

1

Y XX 1 .dX (B2)

0

a-1 = X R X(1-X) dX , (B3)

1

BE XU X v 1 R 2 dX , (B4)

0

where h is assumed to satisfy the deDonder condition

h h 1 h 0 (B5)
1 yv = huv 2 1 ,y

and the Ricci tensor is therefore given by

R - - (B6)

and where the index notationused is that of a Lorentz frame in flat spacetime.

Below we list a number of useful identities linking the line inte-

grals a,8,Y , their derivatives at point P , and the values of h

and R at P:

X, = 1 , (B7)
,p 2
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X yt 1 XPXG R (B8)
,pa 2 1 pa

XPy.p = y + 1xx hpc , (B9)

X XPY, =xPxX lhpa + 1 XPXX lh h , (BI0)
ppa 2 1 p,T

S i nv v + 1 e riatv (a11)
2 1

Similar identities involving derivatives at P' and mixed derivatives at

P' and P can be derived fairly easily. For example,

yP= -2 - h h '  (B12)
'p 21

where lh = lh(P) and 1h' E= h(P').

The derivations of these identities are quite straightforward. The

necessary techniques are illustrated by the following derivation of iden-

tity (B7): By differentiating definition (B3) and making use of equations

(Bl), we obtain

1

S X1 R p (l-) dX

0

+ 1 Xpv ( R 3 E C)( r /3xP ) .(1-.) dX
2 f Lv

0

1 1

= X R X(1-X) dX +1 X (R )( ) ) d
lip 2 J 1v,a a

0 0

1 1

= XJ R (1-(l ) dX + 1 vPXl R ~2 1-( ) dXi
) PP 2 f IpyI
0 0

Here R = R /8( is the derivative of R at the integration point

C(). When multiplied by X p  this expression gives
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1 1

Xn p. -XX f (1-A) dX +1 XlX v  (Rp X ) 2 (1-A) dIRpv 2 j f v,p
0 0
1 1

-= x1x R (1-X) dX + X2 (dR /dA) (1-X) dA

0 0

By integrating the last expression by parts we obtain

1

Xap XX R ,[A(1-X) - 1(d/dA)(A 2
- A3)] dA

p Iv 20

0

In this case the integration by parts gave no endpoint terms; but in other

cases [eqs. (B8)-(Bl2)] nonzero endpoint terms are obtained.

In manipulations of our weak-field Green's function 1G(P',P) and of

our second-order gravitational field 2h (see, e.g., Appendix C) two other

identities are useful:

' = (C6) - a 6 +4r a6 4 (x-x') , (B13)

(y6'+ aS) =a + U- O 6
,p ,p 1 ,pa

1+ h + ( -1 0  h )3p ] 4 6 4(x-x') . (B14)
2 1 ,p 2 1 p

Here 6 is the flat-space propagator between P' and P

6 XPX l) , (Bl5a)
6 ret 2 p)

which is related to the 4-dimensional Dirac delta function
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by

0 = -4r 64 (x-x) (Bl5c)

and 6, is the derivative of the propagator (Bl5a) with respect to its argument.

The absence of primes on indices and onh's in (B13) and (B 14) indicates that

all derivatives and endpoint terms are taken at P ; none are at P' . The

identities (B13) and (B14) can be derived with some labor from the iden-

tities (B7)-(Bll).
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APPENDIX C

PROOF THAT THE "PLUG-IN-AND-GRIND" FORMULAS FOR h SATISFY

THE FIELD EQUATIONS AND GAUGE CONDITION

Here we briefly sketch the proof that our second-order gravitational

field [eqs.(58)1satisfies the second-order Einstein field equation [eqs. (16)

with n = 2] and the deDonder gauge condition 2h, = 0 As part of our

proof we shall derive expressions for the amount by which each piece of

2 h fails, by itself, to satisfy the field equations and gauge condition.

A preliminary step in our proof is to rewrite the "tail" and "transi-

tion" fields (58f) and (58d) in new forms.

Although expression (58f) for the tail seems optimal for practical

radiation calculations, the restriction P' e I (P) makes it nasty for

formal manipulations. To get rid of this restriction, we take expression

(B13) for B6 ' , in it we replace P by P", and then we insert it into

expression (58f). The result,

2hTL (/7)jj [a(P' P")] p, ret(2 Xa " P ) Xret2  - O)2 TL U ' P~d ret 2 ca ret 2

x 2TI(p') d 4x" dx' , (Cl)

is an expression which gives the same value for 2hTL whether one imposes

or omits the restriction P' E I (P). One way to see that (Cl) is oblivi-

ous to the restriction P' e I-(P) is this: Take the source equation (31)

for the tail of the exact curved-space Green's function; calculate its lowest-.

order form

Gtail P = (4)-l [(P 'P)] P (1 8
G P p6 X, 1
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tail
invert this using a flat-space propagator; use the resulting G to

calculate 2 ; the result will be expression (Cl)--and nowhere in the

derivation did one need to impose the restriction P' E I-(P).

Expression (58d) for the transition field involves a "time-delay

function" y(P',P) from which the logarithmic, "external time delay"

A(-X U ) has been removed. A straightforward subtraction of the external

time delay is well suited to practical calculations, but poorly suited to

formal manipulations of 2h  . In the formal manipulations of this appen-

dix we shall perform the truncation in a "smoother" manner: We surround

the source by a (hypothetical) cloud of negative-mass material, with total

mass, -M, equal in magnitude to that of the source, +M. We put the cloud

far enough from the source (e.g., at radius . 1 100L) that it is very dif-

fuse, and this contributes negligibly to the line integrals cc and g ;

but near enough that the Shapiro time delay 2M ZnV/L) in going from

source L to cloud .~ is small compared to the timescale X of the

source's internal motions. The cloud automatically removes the external

Shapiro time delay; no artificial truncation of y is needed. The second-

order gravitational field is then given by equations (58) and (Cl) every-

where (inside the source and out), except that we must remove the artificial

truncation from (58d):

2TR y(P' 6ret ( X' lX ~) 2T (P) d4 x' (C2)
2 TR f ret 2 c 2

Turn now to the proof that our second-order field satisfies the

second-order Einstein field equation. We begin by applying the first-order

wave operator

Ds = ( B - h )  (C3)
1 s a44
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to each of the five pieces of our second-order field. By applying 1ls

to the direct field (eq. (58b)) and by using equation (Bl5c) we obtain

1-1 V = -16r (1- h) T
Ss 2 D 2 1 2

1 21
- 4hp 6ret2 X x  ) 

2T T(P') d
4x' (C4a)

By applying 10s to the whump field (eq. 58e) and by using (Bl5c) we

obtain

D =b -167 P hvo . (C4b)
I s 2W =-16 ItL-L 1 , 1 C

By applying 10 s to the tail field (eq. Cl) and by using (Bl5c) we obtain

1 s 2 hTL= -4 1a(P',P)],p 6ret(- X fl a) (P') d4x' . (C4c)

By applying 10 s to' the focussing. field (58c), and by using (Bl5c) and the

relation a(P,P) = 0 [cf. eq. (B3)] we obtain

ls 2f[ 4 [a(P' ,P)] 6 1re(- X a 2T (P ) d4x'
1 s 2 f ,p ret(_ X X n

(C4d)

+8 f[a(P',P)], [631 ret a X 8 aB)]P 2 T. 
(P') d4 x'

By applying 1 s to the transition field (C2), and by using (B14), (B11),

(Bl5c), and limits as P' + P that are obtainable from (Bl)-(B4),we obtain

3 T_ V 4h" a x (1 Xa x ) T (P') d x'
Is 2 TR c rt 6 B 2  

( ) d4x'

(C4e)

1 8 , lav 4T
-8 [ (P',P)] P [6ret XX a) 2T (P) d x '  .

45



By adding up all five pieces (C4a)-(C4e) we obtain

0 2. l = -167[ (1 T - ] + ItLL h (C5)
1 s 2 2 IT 2 tL-L 1 ,&1 ,p

which is the second-order Einstein field equation (16).

Turn now to a proof that our field (58) satisfies the deDonder gauge

condition h ,V  0 except for fractional errors of O( 2 ). From (58b) and2 ,v
the relation

V i ret( xaxB n) f(P') d4 x' = -(- xa ' ) d4 x' (C6)

valid for any function f(P'), we obtain

-- v 4 i ( X uv
2hD ,v 4 retXX ~2 d4 x '  (C7a)

From (58e), (C6), and 1 h P0  = 0 we obtain

== ('I J t V + (167)-1 lp v p] d 4x '

2h f, ret 2 aS it  ,1 ,o 1 ,p at

(C7b)

We now add (C7a) and (C7b) and use the post-linear equations of motion (24a)

rewritten in the form

T ](1 - )+ t = 0

[cf. eq. (3)] to obtain

(1-1 1 l h P(P') h (P') d4x , .

2 D 2T = et 2 1 ,G'V 1p

We then use an integration by parts on x together with (C6) and a re-

labelling of indices to obtain
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(2 hD + 2 h) = (4T)- I r i XX ) h (P') hP"(P') dx'.
2 D 4,v V ret 2 rl 1 ,'p 1

We then give P' the new name P" and rewrite I1V(P") as a retarded

integral [the solution to eq. (24b)]; the result is

(2Y 2 4 .i),V = (1/i) ff ~ret ( 1 )

x 6ret "~ " ,p"o" 2T~(P')d4x ' 4x . (Ce)

By applying D to expression (Cl), adding it onto (C7c), using identi-

ties (314) and (Bl5c), integrating by parts, and using the limiting forms of

(Bl)-(B4) as -P P' , we obtain

( 2 
2 T () d4 x (Cd) T

= -43 f(P',P) 6ret 2 aS 2i T' (P' d (C7d)

- 48 a(P',P) 6r(2 X aB) 2Ty(P ' ) d4x '

Comparison with expressions (C2) for 2 and (58c) for 2h shows

that

(j 7119 , 'V + 1V) = 0 (C8)
(2UD+2 2-L 2TR 2 ,v

i.e., our total second-order field does satisfy the deDonder gauge con-

dition.
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FIGURE CATIONS

Fig. 1. The points P ,P', P" used in evaluating the post-linear

Green's function IG(P',P) and in calculating the post-linear

gravitational-wave field 2h ' (P) Part (a) shows the parametrized

straight-line curves C(A) and C'(X) linking P, P', and P";

part (b) shows the 4-vectors X , X ', and -'l linking them.
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